Mark Scheme (Results)

October 2022

Pearson Edexcel International Advanced Level In Statistics S2 (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2022
Question Paper Log Number P72155A
Publications Code WST02_01_2210_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation. e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.
The following criteria are usually applied to the equation.
To earn the M mark, the equation
(i) should have the correct number of terms
(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel ' g ' s.
For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity - this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. - follow through - marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only’ (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
7. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question Number	Scheme			Marks
1(a)(i)	$[\mathrm{P}(F<3 \mid F \sim \operatorname{Po}(1.5))=] 0.8088$ awrt 0.809			B1
				(1)
(ii)	$[\mathrm{P}(F \ldots 6)=] 1-\mathrm{P}\left(F,{ }^{5}\right)$ or $1-0.9955$			M1
	$=0.0045$		awrt 0.0045	A1
				(2)
(b)	$R \sim \operatorname{Po}(10) \quad \therefore[\mathrm{P}(R,, 12)]=0.7916$		awrt 0.792	M1
	$X \sim \mathrm{~B}(15, ~ " 0.7916 ")$			M1
	$[\mathrm{P}(X=10)=]^{15} C_{10}(" 0.7916)^{10}(1-" 0.7916)^{5}$			M1
	$=0.11405 \ldots$		awrt 0.114	A1
				(4)
(c)	$H \sim \operatorname{Po}(0.4)$			M1
	$[\mathrm{P}(H=0)=] \mathrm{e}^{-0.4} \quad[=0.6703 \ldots]$ or $[\mathrm{P}(H>0)=] 1-\mathrm{e}^{-0.4} \quad[=0.32967 \ldots]$			M1
	Profit $=2.4 \times$ "0.6703..." $-3 \times 0.32967 \ldots .$.			dM1
	$=0.6197$		awrt 0.62	A1
				(4)
	Notes			Total 11
(a) (i)	B1	awrt 0.809		
(ii)	M1	Writing or using $1-\mathrm{P}\left(F,{ }^{\text {, }}\right.$)		
	A1	awrt 0.0045		
(b)	M1	For 0.792 or better		
	M1	For writing $\mathrm{B}(15, "$ their $0.7916 ")$ May be implied by a fully correct method for $\mathrm{P}(X=10)$		
	M1	A correct method to find $\mathrm{P}(X=10)$ using a binomial distribution (implied by awrt 0.114)		
	A1	awrt 0.114		
(c)	M1	Writing or using $\mathrm{Po}(0.4)$ e.g. $\mathrm{P}(H=1)=0.268 \ldots$		
	M1	Correct method to find $\mathrm{P}(H=0)$ or $\mathrm{P}(H>0)$ May be implied by awrt 0.67 or $1-$ awrt 0.67		
	M1dep	Dependent on the previous method mark being awarded. Correct method to find the profit. Allow $7.4 \times$ " $0.6703 . . . "+2 \times$ " $0.32967 . . . "-5$		
	A1	awrt 0.62 Allow 62 p		

	A1	Correct integration of $2 x^{2}-\frac{3}{4} x$
	$\mathbf{d M 1}$	Dep on previous M being awarded. Substituting in the correct limits (implied by $\frac{93}{128}$ or awrt 0.727 Condone 0.726) If the integration is incorrect, we must see the correct non simplified substitution into their integral. Ignore substitution into $\frac{1}{8} x^{2}$. Useful values to look for are $\frac{125}{96}, \frac{75}{128}, \frac{1}{12}$ and $\frac{3}{32}$ or $\frac{275}{384}$ and $\pm \frac{1}{96}$
(d)	B1	For $\frac{93}{128}$ or awrt 0.727
	M1	A correct equation for finding Q_{3}

Question Number	Scheme		Marks
3(a)	$\mathrm{H}_{0}: p=0.35 \quad \mathrm{H}_{1}: p \neq 0.35$		B1
	$\mathrm{P}(X, 8)=$ awrt 0.0303 or $\mathrm{P}(X \ldots 21)=$ awrt 0.0173 or $\mathrm{P}(X, 20)=$ awrt 0.9827		M1
	$[\mathrm{P}(X, 8)=]$ awrt 0.0303 and $[\mathrm{P}(X \ldots 21)=]$ awrt 0.0173		A1
	CR $X, 8$ and $X \ldots 21$		A1
			(4)
(b)	0.0476		B1ft
			(1)
(c)	$\mathrm{H}_{0}: p=0.028 \quad \mathrm{H}_{1}: p>0.028$		B1
	$Y \square \mathrm{~B}(250,0.028) \Rightarrow Y \square \mathrm{Po}(7)$		M1
	$\mathrm{P}(Y \ldots 11)=1-\mathrm{P}(Y, \ldots 10) \quad$ or $\quad \mathrm{P}(Y \ldots 13)=1-0.973$		M1
		$=0.0985$ or Critical region Y.. 13	A1
	There is insufficient evidence to suggest that the proportion of sunflower seeds that grow to a height of more than 3 metres is now greater than 0.028		A1
			(5)
	Notes		Total 10
(a)	B1 ${ }^{\text {Both hypotheses in terms or } p \text { or } \pi}$		
	M1	One of the correct probability statements. Implied by a correct critical region	
	A1	awrt 0.0303 and awrt 0.0173	
	A1	Both parts of the critical region given. Allow alternative notation e.g. $X<9$ and $X>20$ Do not allow as probability statements.	
(b)	B1	For 0.0476 Allow awrt 0.0475 (calculator) or ft their two critical regions provided probabilities are seen in part (a) Common ft is for $X, 7$ and $X \ldots 21$ gives 0.0297	
(c)	B1	Both hypotheses in terms or p or π - If already lost the mark in (a) for incorrect letter allow any letter	
	M1	$\mathrm{Po}(7)$ written or used	
	M1	Writing or using $1-\mathrm{P}(Y,, 10)$ or $1-0.9015$ or $1-0.973$ (May be implied by 0.0985) or may be implied by Y.. 13 provided $\operatorname{Po}(7)$ seen or used If using $\mathrm{N}(7,6.804)$ or $\mathrm{N}(7,7)$ allow use of $1-\mathrm{P}(Y, 10)$ or $1-\mathrm{P}(Y,, 10.5)$ $\mathrm{B}(250,0.028)$ gives $0.09549 \ldots$ and implies M1 $\mathrm{N}(7,6.804)$ gives awrt 0.09 (Calc gives $0.08983 \ldots$) or awrt 0.13 (Calc gives $0.125 \ldots$) and implies M1 $\mathrm{N}(7,7)$ gives awrt 0.09 (Calc gives $0.09293 \ldots$) or awrt 0.13 (Calc gives $0.1284 \ldots$) and implies M1	
	A1	awrt 0.0985 or CR: Y.. 13 provided Po(7) seen or used (Allow any letter for the CR)	
	A1	Independent of the hypotheses but dependent on the previous M1A1 being awarded. A correct conclusion in context. Allow amount/number for proportion, sunflowers for seeds and increased oe for greater. Ignore any non-contextual statements	

	A1	Correct ranges with correct associated probabilities attached. All extras must have an associated probability of 0 (Does not have to be seen in a table) NB Allow decimal answers correct to 3 decimal places $\frac{23}{256}=0.090 \quad \frac{89}{256}=0.348 \quad \frac{81}{256}=0.316\left[\frac{63}{256}=0.246\right]$

Question Number	Scheme	Marks
7(i)	$\frac{a+b}{2}=9$ and $\frac{13-5}{b-a}=\frac{1}{5}$ or $a=-11$ and $b=29$	M1
	$\mathrm{P}\left(x>\frac{" 29 "-" 11 "}{3}\right)[=\mathrm{P}(x>6)]$ or $\mathrm{P}\left(x>\frac{9 \times 2}{3}\right)[=\mathrm{P}(x>6)]=\frac{23}{40}$	M1A1
		(3)
(ii)	$\frac{1}{12}(c-1)^{2}=0.48 \Rightarrow c=3.4$	M1
	$\mathrm{E}(Y)=\frac{1+" 3.4 "}{2}$	M1
	$\mathrm{E}\left(Y^{2}\right)=0.48+"\left(\frac{1+3.4}{2}\right) "^{2}=5.32$	M1A1
		(4)
(iii)	$W \sim \mathrm{U}[0,20] \quad X \sim \mathrm{U}[10,20] \quad Y \sim \mathrm{U}[0,10]$	
	$W<6$ or $W>14$ or $X<12$ or $Y>8$ any letter, ignore distribution	M1
	$\begin{aligned} & 2 \times \mathrm{P}(W<6)=2 \times \frac{(6-0)}{20} \text { or } 2 \times \mathrm{P}(W>14)=2 \times \frac{(20-14)}{20} \text { or } \\ & \mathrm{P}(W<6)=\frac{6-0}{20} \text { and } \mathrm{P}(W>14)=\frac{20-14}{20} \text { or } \mathrm{P}(X>14)=\frac{20-14}{10} \text { or } \mathrm{P}(Y<6)=\frac{6-0}{10} \end{aligned}$	M1
	$\mathrm{P}(8<W<12)=\frac{12-8}{20}$ or $\mathrm{P}(X<12)=\frac{12-10}{10}$ or $\mathrm{P}(Y>8)=\frac{10-8}{10}$	M1
	$\mathrm{P}($ shortest side $<6)=4 \frac{3}{10} "+" \frac{3}{10} "+" \frac{1}{5} "$ or $" \frac{1}{5} "+" \frac{3}{5} "=\frac{4}{5}$	dM1A1
		(5)
	Alternative 1	
	$6<W<8$ or $12<W<14$ any letter, ignore distribution	M1
	$\mathrm{P}(6<W<8)=\frac{8-6}{20}$ or $\mathrm{P}(12<W<14)=\frac{14-12}{20} \quad \left\lvert\, \begin{aligned} & \mathrm{M} 2 \text { for } \\ & \mathrm{P}(12<X<14)=\underline{14-12} \text { or }\end{aligned}\right.$	M1
	$\begin{array}{ll} \mathrm{P}(6<W<8)=\frac{1}{10} \text { and } \mathrm{P}(12<W<14)=\frac{1}{10} \text { or } \\ 2 \times \mathrm{P}(6<W<8)=2 \times \frac{1}{10} \text { or } 2 \times \mathrm{P}(12<W<14)=2 \times \frac{1}{10} & \mathrm{P}(6<Y<8)=\frac{8-6}{10} \end{array}$	M1
	$\mathrm{P}(\text { shortest side }<6)=1-" \frac{1}{10} "-" \frac{1}{10} " \text { or } 1-" \frac{2}{10} "=\frac{4}{5}$	dM1A1
	Alternative 2	(5)
	$W>10$ or $12<W<14$ or $6<W<8$ or $W<10$ any letter, ignore distribution	M1
	$\begin{aligned} & \mathrm{P}(12<W<14)=\frac{14-12}{20} \text { and } \mathrm{P}(W>10)=\frac{20-10}{20} \text { or } \\ & \mathrm{P}(6<W<8)=\frac{8-6}{20} \text { and } \mathrm{P}(W<10)=\frac{10-0}{20} \end{aligned}$	M1
	$\mathrm{P}(12<W<14 \mid W>10)=\frac{" 1 / 10 "}{" 1 / 2 "}\left[=\frac{1}{5}\right] \text { or } \mathrm{P}(6<W<8 \mid W<10)=\frac{" 1 / 10 "}{" 1 / 2 "}\left[=\frac{1}{5}\right]$	M1
	$\mathrm{P}($ shortest side $<6)=1-\frac{1}{5}^{\prime \prime}=\frac{4}{5}$	dM1A1
		(5)
	NB Any answer of $\frac{4}{5}$ scores $5 / 5$ provided it has not come from incorrect working	
		Total 12

